Material de refuerzo Once Periodo I Quimica

Hola Chic@s les envio estos link, para que los repasen y despejen dudas, Ellos contienen los temas vistos en el primer periodo.


Cinética química

Equilibrio químico

Química Organica

FELICES VACACIONES

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Material de refuerzo Décimo Periodo I

Hola Chic@s les dejo los siguientes link, para que los estudien y repasen.  Aquí estan los temas del primer periodo, y se que les servirán para prepararse para el examen final de periodo.

Los link por tema:


Cambios químicos

Reacciones químicas

Identificación de sustancias en las reacciones químicas
Clasificación de reacciones químicas

Métodos de balanceo de reacciones químicas
http://www.youtube.com/watch?v=qkLBn7W_3g4&feature=fvsr

Felices Vacaciones

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Material de refuerzo Noveno

Hola Chic@s les dejo estos link para que repasen y afiancen los temas vistos en el primer periodo, para la evaluación de final de periodo, cuando regresemos de Semana Santa.

Les dejo los link por tema, estúdienlos:


Nuestro sistema nervioso


Impulso nervioso, neurona, estimulo y respuesta
Órganos del sistema nervioso


Sistema nervioso periférico
Funciones cerebrales


Sistema endocrino


FELICES VACACIONES

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Material de refuerzo Octavo


Material de refuerzo Octavo

Hola chic@s, aquí les dejo estos link para que los revisen y repasen sobre los temas vistos en clase, este material es didáctico y sirve de refuerzo.
Los link por tema son:


Reproducción sexual y asexual (Reino Mónera, Protista y Fungí)
http://www.youtube.com/watch?v=KcFabI60VSs&feature=related
Reino vegetal  (Reproducción)
http://www.youtube.com/watch?v=Y11TBSAshVY&feature=fvsr
Reino Animal (Reproducción)
http://www.youtube.com/watch?v=hvtQIqUz22ohttp://www.youtube.com/watch?v=fGXXAAVT0sI&feature=fvsr
Reproducción Humana
http://www.youtube.com/watch?v=aAg2pmvUChghttp://www.youtube.com/watch?v=vF3MtnDQ7NY&feature=fvsthttp://www.youtube.com/watch?v=zXgIuDD3G4M&feature=relmfuhttp://www.youtube.com/watch?v=TsS9UHekL28&feature=fvsthttp://www.youtube.com/watch?v=vbzq90Iaaic&feature=related


Espero que este material les sirva y que lo aprovechen...Felices vacaciones

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Material de refuerzo Sistema endocrino

Hola chic@s, les envió un vídeo para que complementen el tema de sistema endocrino y de paso repasen.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Material de refuerzo Nutrición generalidades

Buenos días chic@s comparto estos link interactivos para que repasen y complementen los temas vistos en clase.
Desarrollen las actividades propuestas e interactuen en las paginas, les recomiendo que revisen cada uno de los link.


  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Material de repaso y apoyo para la semana santa

Buenos días chic@s de sexto, les dejo algunos link para que disfruten estos vídeos y se preparen para los exámenes de final del primer periodo, este tema en especifico en clasificación de los seres vivos.




Recuerden que este material es apoyo a los temas vistos en el primer periodo...Felices vacaciones de Semana Santa

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Reacciones Químicas material Décimo

  Hola Chic@s les comparto este material de refuerzo para los temas del primer periodo           

  LAS REACCIONES QUÍMICAS
    La materia puede sufrir cambios mediante diversos procesos. No obstante, todos esos cambios se pueden agrupar en dos tipos: cambios físicos y cambios químicos.
CAMBIOS FÍSICOS
    En estos cambios no se producen modificaciones en la naturaleza de la sustancia o sustancias que intervienen. Ejemplos de este tipo de cambios son:
ü  Cambios de estado.
ü  Mezclas.
ü  Disoluciones.
ü  Separación de sustancias en mezclas o disoluciones.
CAMBIOS QUÍMICOS
    En este caso, los cambios si alteran la naturaleza de las sustancias: desaparecen unas y aparecen otras con propiedades muy distintas. No es posible volver atrás por un procedimiento físico (como calentamiento o enfriamiento, filtrado, evaporación, etc.)
    Una reacción química es un proceso por el cual una o más sustancias, llamadas reactivos, se transforman en otra u otras sustancias con propiedades diferentes, llamadas productos.
    En una reacción química, los enlaces entre los átomos que forman los reactivos se rompen. Entonces, los átomos se reorganizan de otro modo, formando nuevos enlaces y dando lugar a una o más sustancias diferentes a las iniciales.
La o las sustancias nuevas que se forman suelen presentar un aspecto totalmente diferente del que tenían las sustancias de partida.
Durante la reacción se desprende o se absorbe energía:
Reacción exotérmica: se desprende energía en el curso de la reacción.
Reacción endotérmica: se absorbe energía durante el curso de la reacción.
Se cumple la ley de conservación de la masa: la suma de las masas de los reactivos es igual a la suma de las masas de los productos. Esto es así porque durante la reacción los átomos ni aparecen ni desaparecen, sólo se reordenan en una disposición distinta.
    Una reacción química se representa mediante una ecuación química. Para leer o escribir una ecuación química, se deben seguir las siguientes reglas:
Las fórmulas de los reactivos se escriben a la izquierda, y las de los productos a la derecha, separadas ambas por una flecha que indica el sentido de la reacción.Descripción: http://www.quimicaweb.net/grupo_trabajo_fyq3/tema6/imagenes/ec_qca.JPG
A cada lado de la reacción, es decir, a derecha y a izquierda de la flecha, debe existir el mismo número de átomos de cada elemento.
    Cuando una ecuación química cumple esta segunda regla, se dice que está ajustada o equilibrada. Para equilibrar reacciones químicas, se ponen delante de las fórmulas unos números llamados coeficientes, que indican el número relativo de átomos y moléculas que intervienen en la reacción.
Nota: estos coeficientes situados delante de las fórmulas, son los únicos números en la ecuación que se pueden cambiar, mientras que los números que aparecen dentro de las fórmulas son intocables, pues un cambio en ellos significa un cambio de sustancia que reacciona y, por tanto, se trataría de una reacción distinta.
    Si se quiere o necesita indicar el estado en que se encuentran las sustancias que intervienen o si se encuentran en disolución, se puede hacer añadiendo los siguientes símbolos detrás de la fórmula química correspondiente:
(s) = sólido.
(Metal) = elemento metálico.
(l) = líquido.
(g) = gas.
(aq) = disolución acuosa (en agua).
    Aquí tienes dos enlaces para ver cómo se ajustan las ecuaciones químicas:

Cálculo De La Masa Y El Volumen A Partir De Ecuaciones Químicas
    Las ecuaciones químicas permiten calcular, a partir de una cantidad determinada de alguno de los reactivos y productos que intervienen en una reacción, la cantidad necesaria del resto de los componentes de la misma.
Cálculos masa - masa
     En este caso nos aprovechamos de la relación que hay entre  cantidad de sustancia (en mol), masa de sustancia y masa molar, tal como indica la relación:
cantidad de sustancia =
masa en gramos
;    n (mol) =
m(g)
masa molar
M (g/mol)
    Cálculos volumen - volumen
    La ley de Avogadro dice lo siguiente:
Volúmenes iguales de diferentes gases en las mismas condiciones de presión y temperatura, contienen el mismo número de partículas
     Esta ley implica que números iguales (por ejemplo, un mol) de partículas , átomos o moléculas, ocupan el mismo volumen,  lo cual es muy útil para realizar cálculos de volúmenes en aquellas reacciones en las que intervengan gases.

VELOCIDAD DE UNA REACCIÓN QUÍMICA
        Para saber si una reacción es rápida o lenta, hay que conocer la velocidad a la que transcurre.  Podemos definir velocidad de reacción como la variación de cantidad de sustancia formada o transformada por unidad de tiempo.
    En general, para determinar la velocidad de una reacción, hay que medir la cantidad de reactivo que desaparece o la cantidad de producto que se forma por unidad de tiempo.

Factores que afectan a la velocidad de reacción
    la velocidad de una reacción se ve influida por una serie de factores; entre ellos se pueden destacar:
Naturaleza de los reactivos
    Se ha observado que según los reactivos que intervengan, las reacciones tienen distinta velocidad, pero no se ha podido establecer aún unas reglas generales.
Concentración de los reactivos
    La velocidad de reacción aumenta con la concentración de los reactivos.  Para aumentar la concentración de un reactivo:
Si es un gas, se consigue elevando su presión.
Si se encuentra en disolución, se consigue cambiando la relación entre el soluto y el disolvente.
 Superficie de contacto de los reactivos
    Cuanto más divididos están los reactivos, más rápida es la reacción. Esto es así porque se aumenta la superficie expuesta a la misma.
 Temperatura
    En general, la velocidad de una reacción química aumenta conforme se eleva la temperatura.
Presencia de catalizadores
    Un catalizador es una sustancia, distinta a los reactivos o los productos, que modifican la velocidad de una reacción. Al final de la misma, el catalizador se recupera por completo e inalterado. En general, hace falta muy poca cantidad de catalizador.
    Los catalizadores aumentan la velocidad de la reacción, pero no la cantidad de producto que se forma.
    Estamos rodeados por reacciones químicas; tienen lugar en laboratorios, pero también en fábricas, automóviles, centrales térmicas, cocinas, atmósfera, interior de la Tierra... Incluso en nuestro cuerpo ocurren miles de reacciones químicas en cada instante, que determinan lo que hacemos y pensamos.
    De toda la variedad de reacciones posibles, vamos a ver dos: las de neutralización y las de combustión. Pero antes de verlas, es necesario conocer y dominar el concepto de ácido y base.

Ácidos y bases
    Las características de los ácidos y las bases se resumen en el siguiente cuadro:
Ácidos

Bases
▪Tienen sabor agrio (ácido).

▪Tienen sabor amargo.
▪Reaccionan con ciertos metales, como Zn, Mg o Fe, para dar hidrógeno

▪Reaccionan con las grasas para dar jabones.
▪Reaccionan con las bases para dar sales

▪Reaccionan con los ácidos para dar sales.
Son sustancias ácidas: el ácido clorhídrico (HCl); el ácido bromhídrico (HBr); el ácido nítrico (HNO3); el ácido carbónico (H2CO3) y el ácido sulfúrico (H2SO4), entre otros

Son sustancias básicas el hidróxido de amonio o amoniaco disuelto en agua (NH4OH); y los hidróxidos de los metales alcalinos (LiOH, NaOH, KOH,...) y alcalinotérreos, como el Ca(OH)2, y Mg(OH)2, entre otros
   Para distinguir si una sustancia es ácida o básica, se utiliza la escala de pH, comprendida entre el 1 y el 14:
Si una sustancia tiene un pH igual a 7, se dice que es neutra, ni ácida ni básica (por ejemplo, el agua pura).
Si una sustancia tiene un pH menor que 7, tiene carácter ácido.
Si una sustancia tiene un pH mayor que 7, tiene carácter básico.
    En los laboratorios y aquellos otros lugares donde es necesario determinan esta propiedad (como en un análisis de agua potable, por ejemplo), se utiliza un indicador ácido-base, que es una sustancia que presenta un color distinto según sea el pH del medio. Algunos ejemplos se muestran en las dos tablas siguientes:
Indicadores
Color en medio ácido
Color en medio básico
Naranja de metilo
Naranja
Amarillo
Fenolftaleina
Incoloro
Rosa
Azul de bromotimol
Amarillo
Azul
Tornasol
Rojo
Azul




 Para ahorrar tiempo y trabajo, se utiliza mucho el papel indicador universal, que es un papel impregnado con una mezcla de indicadores y que adquiere un color distinto según los distintos pH.
Neutralización
    Cuando entran en reacción un ácido (por ejemplo, HCl) y una base (NaOH), el primero se disocia liberando H+ y Cl-, mientras que el segundo se disocia en Na+ y OH-. Los iones Cl- y Na+ se unen formando una nueva sustancia neutra (en este caso NaCl), llamada sal y los iones H+ y OH- se unen por su parte para forman H2O, es decir, agua.
acido + base         →         sal + agua

La combustión
    La combustión es el proceso químico por el cual una sustancia, llamada combustible, reacciona con el oxígeno. En general, esta reacción es fuertemente exotérmica, desprendiéndose energía en forma de calor, luz o sonido.
    Esta reacción no tiene lugar de forma espontánea, sino que, para que comience, ha de aportarse energía a través de una llama o de una chispa eléctrica. Eso si, una vez empezada, continúa por sí sola hasta que se agote el combustible o el oxígeno.
    Es una reacción de gran importancia, tanto en la naturaleza como para la actividad humana, ya que es la forma en que los seres vivos y los artefactos humanos obtienen de forma muy mayoritaria su energía.  Reacciones de combustión particularmente importantes son:
La combustión del carbono. Su ecuación química es la siguiente: C(s) + O2(g)  →    CO2(g). El producto es dióxido de carbono y se desprende energía lumínica y calorífica. Cuando esta reacción tiene lugar con poco oxígeno, la reacción es entonces: C(s) + ½O2(g)  →    CO(g), formándose monóxido de carbono, un gas venenoso y muy peligroso.
La combustión de hidrocarburos (compuestos cuya base es carbono e hidrógeno). En esta reacción se forma CO2 y vapor de agua. Es la reacción que tiene lugar en la combustión de los combustibles fósiles (carbón y petróleo), fuente básica de obtención de energía en nuestra sociedad. Un ejemplo de esta reacción es la combustión del metano:
CH4(g) + 2O2(g)  →    CO2 (g) + 2 H2O (g)
La combustión de la glucosa en el cuerpo humano. La glucosa, procedente de la digestión de ciertos alimentos o de la transformación de otras sustancias, reacciona con el oxígeno presente en las células, produciendo CO2, agua y liberando energía. Esta reacción es lo que se conoce como respiración, cuya importancia no es necesario recordar.
    Un punto importante a destacar, es que los productos de la combustión, fundamentalmente el dióxido de carbono, tienen una gran incidencia cuando son liberados al medio ambiente, ya que este gas es el que produce mayor efecto invernadero.Neutralización
    Cuando entran en reacción un ácido (por ejemplo, HCl) y una base (NaOH), el primero se disocia liberando H+ y Cl-, mientras que el segundo se disocia en Na+ y OH-. Los iones Cl- y Na+ se unen formando una nueva sustancia neutra (en este caso NaCl), llamada sal y los iones H+ y OH- se unen por su parte para forman H2O, es decir, agua.
acido + base         →         sal + agua

La combustión
    La combustión es el proceso químico por el cual una sustancia, llamada combustible, reacciona con el oxígeno. En general, esta reacción es fuertemente exotérmica, desprendiéndose energía en forma de calor, luz o sonido.
    Esta reacción no tiene lugar de forma espontánea, sino que, para que comience, ha de aportarse energía a través de una llama o de una chispa eléctrica. Eso si, una vez empezada, continúa por sí sola hasta que se agote el combustible o el oxígeno.
    Es una reacción de gran importancia, tanto en la naturaleza como para la actividad humana, ya que es la forma en que los seres vivos y los artefactos humanos obtienen de forma muy mayoritaria su energía.  Reacciones de combustión particularmente importantes son:
La combustión del carbono. Su ecuación química es la siguiente: C(s) + O2(g)  →    CO2(g). El producto es dióxido de carbono y se desprende energía lumínica y calorífica. Cuando esta reacción tiene lugar con poco oxígeno, la reacción es entonces: C(s) + ½O2(g)  →    CO(g), formándose monóxido de carbono, un gas venenoso y muy peligroso.
La combustión de hidrocarburos (compuestos cuya base es carbono e hidrógeno). En esta reacción se forma CO2 y vapor de agua. Es la reacción que tiene lugar en la combustión de los combustibles fósiles (carbón y petróleo), fuente básica de obtención de energía en nuestra sociedad. Un ejemplo de esta reacción es la combustión del metano:
CH4(g) + 2O2(g)  →    CO2 (g) + 2 H2O (g)
La combustión de la glucosa en el cuerpo humano. La glucosa, procedente de la digestión de ciertos alimentos o de la transformación de otras sustancias, reacciona con el oxígeno presente en las células, produciendo CO2, agua y liberando energía. Esta reacción es lo que se conoce como respiración, cuya importancia no es necesario recordar.
    Un punto importante a destacar, es que los productos de la combustión, fundamentalmente el dióxido de carbono, tienen una gran incidencia cuando son liberados al medio ambiente, ya que este gas es el que produce mayor efecto invernadero.


  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Reacciones químicas material refuerzo Décimo

Hola Chic@s, les comparto este link para que lo revisen y aclaren dudas.

http://www.youtube.com/watch?v=JoT_lEAddTw&feature=fvst

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Reproducción sexual y asexual Material refuerzo Octavo

Hola Chic@s les comparto este link para que aprendamos mas sobre reproducción sexual y asexual

http://www.youtube.com/watch?v=KcFabI60VSs

El tema de Meiosis

http://www.youtube.com/watch?v=DjrSoYqe1uw&feature=related

El tema de Mitosis
http://www.youtube.com/watch?v=6oAyXeQa1EU&feature=related

Y la reproducción en plantas
http://www.youtube.com/watch?v=6oAyXeQa1EU&feature=related

Disfruten los vídeos y espero que les sirva para refrescar los conocimientos

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Reproducción Asexual Temática Octavo

Reproducción Asexual
La reproducción asexual es un proceso por el cual algunos seres vivios generan hijos, este tipo de procreación es rápida ya que requiere solamente de un progenitor, en estas no hay gran adaptación porque hay muy poca variabilidad genética y propia de los seres más simples.
La reproducción asexual también se da en organismos pluricelulares.
En este tipo de creación de nuevos seres vivientes podemos dividirlos en dos grandes grupos, como son: la amitosis que se produce en las células procariontes (son las primitivas) y la mitosis que se da en células eucariontes, esta última se da en organismos unicelulares.
MITOSIS:
Es una división celular de la cual se obtienen dos células hijas, genéticamente idénticas entre sí e idénticas a su progenitora. Este proceso mantiene la constancia del número cromosómico, por lo tanto si la célula eucarionte que entra en mitosis es diploide (1 par de ADN, es decir, “2” ADN para una misma función) se obtendrán dos células hijas diploides y si es haploide se obtendrán dos células hijas haploides (di = 2; ha = 1)
Se plantea que la mitosis es la división ecuacional del material hereditario duplicado en el periodo S (momento en que se duplica el material genético) de la interfase. La actividad mitótica se puede observar en tejidos embrionarios, en cicatrizaciones, en regeneraciones de órganos, etc. La mitosis también se da en organismos multicelulares, pero es más frecuente en unicelulares.
Etapas de la mitosis:
La mitosis comienza una vez terminada la interfase, periodo en el cual se ha duplicado en material hereditario:
Profase:
La cromatina (unión del ADN con distintas proteínas) se condensa apareciendo los cromosomas con dos cromátidas hermanas. Los centríolos, que son partes de las células, duplicados en la interfase migran a los polos y comienzan a organizar el huso (fibras proteicas que sostienen a los cromosomas durante la mitosis) mitiólico.
Los nucléolos desaparecen formando la carioteca (división nuclear)

Metafase:
Los cromosomas en su grado de máxima condensación se alinean en el plano ecuatorial formando la placa ecuatorial. Cada cromosoma está unido a un filamento microtubular del huso.
Anafase:
Está fase es importantísima, ella comienza cuando se liberan las fuerzas que mantienen juntas a las cromátidas hermanas en la vecindad de los centrómeros los cuales se han duplicado previamente. En esta fase cada cromátida independiente, simple. Los cromosomas se separan y desplazan en forma lenta a los polos opuestos, los cinetocoros de los cromosomas están aún unidos a microtúbulos del huso y marchan al frente seguidos por los brazos cromosómicos. Sobre esto se piensa que cromosoma se desplaza desensamblando microtúbulos en su cinetocoro.
Telofase:
Al terminar la migración de los dos grupos de cromosomas hijas, el huso mitótico y los ásteres se desorganizan. La carioteca se vuelve a organizar alrededor de cada grupo de cromosomas simples, (de una cromátida) que empiezan a des condensarse y se dispersan.
Los nucléolos nuevamente se organizan a partir de los cromosomas que poseen organizadores nucleolares.

Reproducción de:
La Ameba:
Las amebas toman su nombre de la voz griega amoibe, que significa “cambio”, porque su forma varía constantemente.
La reproducción de las amebas tiene lugar por el proceso asexual sencillo de fisión binaria. Durante la evolución de este proceso, la célula se redondea (se hace esférica), después se divide el núcleo, la célula se alarga y se forma una estrangulación de su parte media que se adelgaza hasta romperse, dando así origen a dos células idénticas a la progenitora. Ciertas amebas tienen la propiedad de enquistarse, para protegerse durante las épocas desfavorables para el crecimiento normal. En este estado sus actividades metabólicas quedan reducidas al mínimo, y el quiste formado les permite sobrevivir hasta que las condiciones vuelvan a ser propicias para el desarrollo.
Paramecios:
Estos viven en charcos y estanques de agua dulce donde existen provisiones alimenticias abundantes. Al igual que la ameba son microscópicos, sin embargo, algunos pueden verse con dificultad sin la necesidad de algún instrumento.
Los paramecios se reproducen asexualmente por fisión binaria, e incluso, pueden reproducirse sexualmente por conjugación. El medio más común, con mucha diferencia, es la fisión en la cual cada uno de los núcleos se alarga y se divide en dos mitades, mientras la célula se estrangula por la parte media dando origen a dos células hijas, cada una de las cuales recibe dos nucleolos. En este proceso, la célula hija que procede de la parte posterior lleva el esófago de la progenitora, y la otra célula hija forma un nuevo conducto esofágico. Las demás partes anatómicas de la célula se forman según se requieren. En condiciones favorables, el proceso de división puede repetirse dos o tres veces al día.
Euglena:
Organismos que pertenecen a la familia de las Euglenophyta. Son monocelulares provistos de flagelos, o sea se movilizan activamente. Las algas de mayor interés son las euglenas, ya que algunos zoólogos creen que pertenecen al reino animal, mientras que algunos botánicos creen que son vegetales, es decir, pertenecen al reino planta. La discrepancia se debe a que no todos los flagelados, según los zoólogos, poseen cloroplastos, y por consiguiente, viven d alimento preformado, como los animales y las bacterias. Muchas de estas no contienen celulosa en las paredes celulares y en este aspecto se asemejan también a los protozoos. Debido a esto su reproducción es mediante la fisión binaria.

Reproducción de hongos unicelulares mediante gemación, esporulación y fisión:
Reproducción de levadura
Gemación:
Las levaduras verdaderas o perfectas, por ejemplo las Sacaromicetáceas, pueden reproducirse mediante por espoluración, por gemación o fisión. La modalidad más común es la gemación, proceso asexual, en el cual la célula progenitora emite un conducto tubular desde la vacuola nuclear hacia un punto periférico próximo a la misma. Entonces se forma, en la dirección del conducto, una pequeña protuberancia en la superficie externa de la célula, y el conducto pasa atravesando la pared celular a dicha protuberancia, la cual se ensancha, llenándose con el material citoplásmico y nuclear de la célula progenitora. Cuando el brote o yema formado llega a ser casi tan grande como la célula progenitora, los aparatos nucleares de ambas células se orientan de forma que sus centrosomas respectivos equidisten del punto de unión. Al llegar este momento, la célula madre y la célula hija se separan y se inicia la formación de nuevas yemas. En la gemación normal no se forman tabiques de separación entre célula madre y células hijas, pero en algunos casos, el proceso se inicia en la gemación y se completa por división, con la separación definitiva de ambos individuos. La célula madura de puede producir por gemación, durante el curso de vida, un promedio de 24 generaciones de células hijas. Las yemas sucesivas se forman siempre en sitios diferentes de la superficie de la célula.
Esporulación:
Las esporas asexuadas, cuya función es difundir la especie, se producen en gran cantidad en comparación con las sexuadas dentro de la reproducción de hongos. De manera que los tipos de esporas asexuadas que producen estos organismos se clasifican en: Comidias, esporangiosporas, zooesporas, antrosporas y oidios. Las comidias son esporas que nacen en su mayoría por gemación, desde el extremo de una hifa, es decir, el elemento filiforme de la parte vegetativa de los hongos. Los esporangiosporas se producen en un esporangio o receptáculo situado en el extremo libre del esporangióforo, que es una clase especial de hifa fértil. Los antrosporas y oidios son células sencillas que se desprenden de la hifa y funcionan como esporas. En algunos casos éstas tienen paredes gruesas que las protegen de condiciones adversas.
Fisión:
O, también llamada fisión binaria (fisiparidad), es un tipo de reproducción vegetativa o asexual, es semejante al proceso reproductor de las bacterias. Las células de levadura aumentan de tamaño o se alargan, el núcleo se divide y se originan dos nuevas células semejantes, por ejemplo los Schizosaccharomyces.
Gemación y fisión combinadas:
Esta cuarta modalidad de reproducción de las levaduras se denomina gemiparidad, y es intermedia entre la gemación y la fisión binaria que se han descrito antes. En este proceso se desarrollan las yemas en los extremos de las células, y después se forma un tabique transversal entre la célula progenitora y la célula hija, separándolas.
FRAGMENTACIÓN DE DIVERSOS ANIMALES
En ciertos animales pluricelulares, tales como celentéreos, esponjas y tunicados, la división celular se produce por yemas. Estas se originan en el cuerpo del organismo madre y después se separan para desarrollarse como nuevos organismos idénticos al primero. Este proceso conocido como gemación, es análogo al proceso de reproducción vegetativa o dispersión de las plantas. La descendencia obtenida es idéntica al organismo que la ha originado.
Mientras que en ciertos insectos la forma de reproducción asexual es la partenogénesis, la cual es el desarrollo de un organismo a partir de un gameto sin fecundar. Es común en el reino animal, mientras en la clase de insectos ocurre sólo en contadas ocasiones. Los mecanismos que la atañen aún no se conocen bien. Algunos grupos de anfibios, reptiles y aves pueden reproducirse por partenogénesis, pero los embriones de mamíferos obtenida de esta clase de experimentos, mueren tras un periodo de días. Esta reproducción también se da en algunas plantas de frutos biológicos sin previa fecundación se llaman partenocarpia. Estos frutos no tienen semillas.

REPRODUCCIÓN DE LOS VEGETALES
Injerto
Para hacer un injerto se toma una parte (llamada púa) de la planta que quiere propagarse; la base de la púa se corta en forma de cuña. En otra planta de la misma especie (llamada patrón o portainjertos) se practica un corte, casi siempre en un punto del mismo diámetro que la púa. Por último, ésta se encaja en el corte de modo que las capas de cámbium —es decir, de meristemo de crecimiento lateral— de las dos piezas entren en contacto. A continuación se unen los dos elementos enrollando en espiral una banda de caucho de injertar, desde la base del corte hasta su extremo superior; por último, se recubre el injerto completo con una cera especial. En no mucho tiempo, por lo general tres o cuatro semanas, la púa y el patrón se sueldan; en ese momento se corta el patrón justo por encima del injerto.
Hay muchos tipos de injerto. El que acaba de describirse se llama injerto lateral; otro tipo común es el llamado de púa por rajadura. Pero el principio de un buen injerto es el mismo en todos los casos, y siempre deben cumplirse una serie de condiciones: el patrón debe encontrarse en fase de crecimiento activo, la púa ha de estar en fase de descanso, y la navaja de injertar ha de estar bien afilada para que el corte sea limpio.
Injerto en escudete
En esta variante del injerto se usa como púa una yema en fase de descanso. La yema se corta del tallo junto con un escudete de corteza y se inserta en un corte en forma de T practicado en la base del patrón. A continuación, se envuelve el injerto con una tira de caucho especial. Cuando la yema termina el descanso y se comprueba que está bien asentada y en fase de crecimiento, se corta la parte del patrón situada por encima del injerto.
Esqueje
Algunas especies vegetales forman raíces a partir de una ramilla o una hoja cortadas si la operación se hace en el momento apropiado. El tallo o la hoja cortados reciben el nombre de esqueje, y deben clavarse en un medio que favorezca la emisión de raíces —por ejemplo, vermiculita o una mezcla de arena— y que ha de mantenerse en condiciones de temperatura y humedad apropiadas. Los esquejes de algunas especies, como el sauce o el álamo, pueden plantarse directamente en el suelo.
Acodo
El acodo permite obtener buenos resultados con ciertas especies difíciles de arraigar. La operación consiste en pelar la corteza de la zona apical de una rama hasta la capa de xilema, con el fin de evitar la llegada de nutrientes hasta el ápice de la rama. La zona descortezada se rodea de una capa de musgo esfagual húmedo y se envuelve en plástico. Al cabo de cierto tiempo se forma en el extremo superior del descortezamiento un callo, tejido nuevo engrosado, y brotan raíces que crecen dentro del musgo. Cuando el cepellón de raíces alcanza un volumen suficiente, se corta la ramilla por la parte inferior del descortezamiento y se planta en una maceta.
Cultivo de tejidos
Este método de multiplicación vegetativa, muy innovador y técnico, es una forma de clonación. Puede cultivarse cualquier tejido vegetal cuyas células sean capaces de dividirse. Aunque se han iniciado cultivos a partir de frutos, endospermo, polen y embriones, los mejores resultados se han conseguido con los procedentes de la zona vascular de tallos y raíces. Se prepara un medio nutritivo con sales y aminoácidos esenciales en una solución de agar que a continuación se envasa en frascos y se esteriliza. Se cortan secciones de tejido en condiciones asépticas (sin contaminación microbiana) y se depositan en la superficie del medio. Se cierran los frascos con algodón (u otro material equivalente) y se colocan en un ambiente controlado. En poco tiempo prolifera un callo que se corta, en condiciones asépticas, en fragmentos pequeños que a su vez se transfieren a un medio rico en auxina —un compuesto vegetal estimulante de la formación de raíces— o en cinetina, que induce el inicio de brotes. Cuando se han desarrollado raíces y partes aéreas, se retira la plántula de las condiciones asépticas y se planta en invernadero en condiciones controladas. El cultivo de tejidos es fácil con especies como la vid, la orquídea, el crisantemo, el espárrago, el gladiolo, la gloxinia o la zanahoria. En otros casos, en particular con las especies perennes longevas, como el roble o el castaño, resulta muy difícil.
Rizoma
Tallo carnoso que crece horizontalmente debajo de la superficie del suelo y actúa como órgano de acumulación de nutrientes que permite perpetuarse a la planta. Los rizomas no son raíces, cuya función es absorber nutrientes, sino que emiten raíces por la cara inferior y tallos por la superior. A diferencia de las raíces verdaderas, los rizomas tienen nudos, yemas y hojas diminutas y no mueren cuando se cortan; si se replantan, dan lugar a una planta nueva.
AMITOSIS:
Proceso en el que participan principalmente las células más primitivas, es decir, las procariotes. En ella se destacan las bacterias, los microplasmas y cianobacterias (algas verde-azules).
Microplasmas:
Son los más pequeños.
Carecen de pares celular.
Vida libre o parásita.
Producen neumonía atípica.
Reproducción bacteriana.
Cianobacterias:
Fijan nitrógeno atmosférico (lo transforman en nitrato = NH3).
Son fotosintéticas.
Pared celular blanda.
Viven en agua dulce, salada, termal, corriente fría, suelo.

Reproducción bacteriana.
Cuando las bacterias se inoculan en un medio apropiado y se incuban en las debidas condiciones, se verifica un enorme incremento de su número en un tiempo relativamente corto. Algunas especies alcanzan su máximo de población dentro de las 24 horas, aunque otras requieren un periodo mucho más largo de incubación. El término crecimiento, aplicado a las bacterias o eubacterias y otros microorganismos, se refiere comúnmente a las variaciones en la producción total de células, y no a los cambios que experimentan los organismos individuales. Lo más frecuente es que el material de inoculación contenga miles de organismos; de modo que por crecimiento se entiende el aumento del número de células sobre el que contenía el material original de siembra. La determinación del crecimiento requiere, pues, la estimación cuantitativa de la producción de células.
La forma de reproducción se conoce como fisión binaria o fisión transversal. El resultado de este proceso reproductor es que la célula individual se divide en dos, después de formarse un tabique transversal que separa los contenidos celulares. Las modificaciones morfológicas exactas que conducen a la fisión binaria no son bien conocidas. Sin embargo considerando una célula bacteriana aislada, viable, en un cultivo en crecimiento, podremos suponer las siguientes fases de desarrollo. Los elementos nutritivos del medio pasan al interior de la célula por un proceso selectivo. Los sistemas enzimáticos de la bacteria convierten entonces los compuestos químicos (nutrientes) que han sido asimilados en el material protoplasmático específico del organismo particular. Se produce un aumento de la sustancia nuclear, a la que sigue el alargamiento de la célula. El contenido de la célula experimenta una reorganización para distribuirse en las dos células formadas al constituirse el tabique transversal o septum, que se desarrolla por invaginación de la membrana citoplasmática.
Otra forma de reproducción observada en algunas bacterias (por ejemplo, actinomycetales) es la formación de un elemento vegetativo filamentoso, que se fragmenta en pequeñas unidades, las cuales evolucionan después dando células de tamaño normal. Además, otras bacterias (hyphomicrobiales) son capaces de reproducirse por gemación. En la célula paterna se desarrolla un brote o yema que, después de una fase de expansión, se separa, dando origen a una nueva célula.

VELOCIDAD DE CRECIMIENTO
La modalidad predominante de reproducción bacteriana es, como hemos indicado, la fisión binaria: una célula se divide dando origen a otras dos células. Tomando como punto de partida una sola bacteria, el aumento se hace en progresión geométrica 1- 2- 4- 8- 32, etc. El periodo de tiempo que se requiere par que la célula se divida -o sea, para que la población se duplique- se denomina tiempo de generación. En condiciones óptimas, es el factor determinante del índice de crecimiento de un cultivo bacteriano. No todas las bacterias tienen el mismo tiempo de generación: para algunas, como la Escherichia coli, es de 15 - 20 minutos, para otras puede ser de varias horas. Tampoco es igual el tiempo de generación para una bacteria determinada en todas las condiciones. La cantidad y calidad de los elementos nutritivos disponibles en el medio y las condiciones físicas ambientales predominantes dan lugar a variaciones en el tiempo de generación


  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS